Homogeneous Catalysis
Wide range of applications in homogeneous catalysis
Tin, along with bismuth, zinc, titanium, zirconium, cerium, aluminum, and potassium catalysts, is frequently used in homogeneous catalysis, particularly in polymerization reactions and organic synthesis. Tin-based catalysts, usually in the form of organotin compounds, are active in solution and offer advantages such as good solubility, high selectivity, and controlled reaction rates. Key applications include the production of polyurethanes, polyesters, and specialty organic compounds. Tin catalysts are valuable due to their efficiency and selectivity, though environmental and health aspects must be considered.
Trade name | Description | Chem. formula | CAS No. | |||
---|---|---|---|---|---|---|
Stannic chloride, anhydrous SnCl4 7646-78-8 |
SnCl4 | 7646-78-8 | ||||
Stannic chloride solution in water SnCl4 7646-78-8 |
SnCl4 | 7646-78-8 | ||||
Stannous chloride solution SnCl2 7772-99-9 |
SnCl2 | 7772-99-9 | ||||
TIB ISCRA AOA-2 - 6303-21-5 |
Antioxidant | - | 6303-21-5 | |||
- 301-10-0 |
TIB KAT 129 | - | 301-10-0 | |||
TIB KAT 152 SnCl2*2H2O 10025-69-1 |
Stannous chloride dihydrate | SnCl2*2H2O | 10025-69-1 | |||
TIB KAT 160 814-94-8 |
Stannous oxalate | 814-94-8 | ||||
TIB KAT 162 SnCl2 7772-99-8 |
Stannous chloride, anhydrous | SnCl2 | 7772-99-8 | |||
TIB KAT 188 - 21651-19-4 |
Stannous oxide | - | 21651-19-4 | |||
TIB KAT 211 - 25168-22-3 |
Dibutyltin dineodecanoate formulation | - | 25168-22-3 | |||
TIB KAT 212 - |
Dibutyltin dicarboxylate formulation | - | ||||
TIB KAT 213 22205-30-7 |
Dioctyltin dilaurylmercaptide | 22205-30-7 | ||||
TIB KAT 214 - 26401-97-8 |
Dioctyltin dithioglycolate | - | 26401-97-8 | |||
TIB KAT 216 - 3648-18-8 |
Dioctyltin dilaurate (DOTL) | - | 3648-18-8 | |||
TIB KAT 217 - 870-08-6 |
Dioctyltin oxide (DOTO) formulation | - | 870-08-6 | |||
TIB KAT 218 - 77-58-7 |
Dibutyltin dilaurate (DBTL) | - | 77-58-7 | |||
TIB KAT 220 - 23850-94-4 |
Monobutylzinntris(2-ethylhexanoate) | - | 23850-94-4 | |||
TIB KAT 223 - 54068-28-9 |
Dioctyltin diketanoate | - | 54068-28-9 | |||
TIB KAT 225 - 3669-02-1 |
Dibutyltin stannoxane | - | 3669-02-1 | |||
TIB KAT 226 22673-19-4 |
Dibutyltin diketanoate | 22673-19-4 | ||||
TIB KAT 226 V 80 - 22673-19-4 |
Dibutyltin diketanoate formulation | - | 22673-19-4 | |||
TIB KAT 229 - 17586-94-6 |
Dioctyltin diacetate (DOTA) | - | 17586-94-6 | |||
TIB KAT 232 - 870-08-6 |
Dioctyltin oxide (DOTO) | - | 870-08-6 | |||
TIB KAT 233 - 1067-33-0 |
Dibutyltin diacetate (DBTA) | - | 1067-33-0 | |||
TIB KAT 233S - 1067-33-0 |
Dibutyltin diacetate (DBTA) formulation | - | 1067-33-0 | |||
TIB KAT 248 - 818-08-6 |
Dibutyltin oxide (DBTO) | - | 818-08-6 | |||
TIB KAT 250 - 13355-96-9 |
Monobutyltin dihydroxychloride | - | 13355-96-9 | |||
TIB KAT 251 - - |
Alkyltin oxide mixture | - | - | |||
TIB KAT 256 - 2273-43-0 |
Monobutyltin oxide (MBTO) | - | 2273-43-0 | |||
TIB KAT 300 68928-76-7 |
Dimethyltin dineodekanoate | 68928-76-7 | ||||
TIB KAT 318 - 68299-15-0 |
Dioctyltin dineodecanoate | - | 68299-15-0 | |||
TIB KAT 319 - 1185-81-5 |
Dibutyltin bislaurylmecaptide | - | 1185-81-5 | |||
TIB KAT 320 - 24577-34-2 |
Dioctyltin bis(2-ethylhexanoate) | - | 24577-34-2 | |||
TIB KAT 321 10584-98-2 |
Dibutyltin bis(2-ethylhexylmercaptoacetate) | 10584-98-2 | ||||
TIB KAT 324 - - |
Dioctyltin stannoxane | - | - | |||
TIB KAT 330 3865-34-7 |
Dimethyltin dioleate | 3865-34-7 | ||||
TIB KAT 340 51287-84-4 |
Dimethyltin bislaurylmercaptide | 51287-84-4 | ||||
TIB KAT 354 57583-35-4 |
Dimethyltin bis(2-ethylhexylmercaptoacetate) | 57583-35-4 | ||||
TIB KAT 410 - 870-08-6 |
Dioctyltin oxide (DOTO) formulation | - | 870-08-6 | |||
TIB KAT 411 870-08-6 |
Dioctyltin oxide (DOTO) formulation | 870-08-6 | ||||
TIB KAT 416 - 93925-42-9 |
Dibutyltin oxide (DBTO) formulation | - | 93925-42-9 | |||
TIB KAT 417 - 870-08-6 |
Dioctyltin oxide (DOTO) formulation | - | 870-08-6 | |||
TIB KAT 422 - 93925-43-0 |
Dioctyltin oxide (DOTO) formulation | - | 93925-43-0 | |||
TIB KAT 423 - 870-08-6 |
Dioctyltin oxide (DOTO) formulation | - | 870-08-6 | |||
TIB KAT 424 - 818-08-6 |
Dibutyltin oxide (DBTO) formulation | - | 818-08-6 | |||
TIB KAT 425 - 870-08-6 |
Dioctyltin oxide (DOTO) formulation | - | 870-08-6 | |||
TIB KAT 425 M60 870-08-6 |
Dioctyltin oxide (DOTO) formulation | 870-08-6 | ||||
TIB KAT 517 - Titanium chelate |
Titanium chelate | - | Titanium chelate | |||
TIB KAT 519 27858-32-8 |
Titanium chelate | 27858-32-8 | ||||
TIB KAT 525 5593-70-4 |
Tetra-n-butyl titanate (TNBT) | 5593-70-4 | ||||
TIB KAT 530 546-68-9 |
Tetraisopropyl titanate (TIPT) | 546-68-9 | ||||
TIB KAT 531 15571-58-1 |
Dioctyltin bis(2-ethylhexylmercaptoacetate) | 15571-58-1 | ||||
TIB KAT 616 27253-29-8 |
Zinc neodecanoate formulation | 27253-29-8 | ||||
TIB KAT 617 27253-29-8 |
Zinc neodecanoate | 27253-29-8 | ||||
TIB KAT 617 DINCH60 27253-29-8 |
Zinc neodecanoate formulation | 27253-29-8 | ||||
TIB KAT 618 85203-81-2 |
Zinc bis(2-ethylhexanoate), Zinc octoate | 85203-81-2 | ||||
TIB KAT 620 85203-81-2 |
Zinc bis(2-ethylhexanoate), Zinc octoate formulation | 85203-81-2 | ||||
TIB KAT 623 14024-63-6 |
Zinc acetylacetonate | 14024-63-6 | ||||
TIB KAT 635 HD 5970-45-6 |
Zinc acetate dihydrate | 5970-45-6 | ||||
TIB KAT 670 27253-29-8 |
Zinc neodecanoate formulation | 27253-29-8 | ||||
TIB KAT 715 - |
Bismuth neodecanoate, Zinc neodecanoate mixture | - | ||||
TIB KAT 716 34364-26-6 |
Bismuth neodecanoate formulation | 34364-26-6 | ||||
TIB KAT 716 LA 34364-26-6 |
Bismuth neodecanoate formulation | 34364-26-6 | ||||
TIB KAT 718 - |
Bismuth neodecanoate, Zinc neodecanoate mixture | - | ||||
TIB KAT 720 67874-71-9 |
Bismuth tris(2-ethylhexanoate), Bismuth octoate formulation | 67874-71-9 | ||||
TIB KAT 721 W 1450629-71-6 |
Bismuth based catalyst, solution in water | 1450629-71-6 | ||||
TIB KAT 722 67874-71-9 |
Bismuth tris(2-ethylhexanoate), Bismuth octoate formulation | 67874-71-9 | ||||
TIB KAT 724 34364-26-6 |
Bismuth neodecanoate | 34364-26-6 | ||||
TIB KAT 725 D70 26761-42-4 |
Potassium based catalyst formulation | 26761-42-4 | ||||
TIB KAT 728 67874-71-9 |
Bismuth tris(2-ethylhexanoate), Bismuth octoate | 67874-71-9 | ||||
TIB KAT 790 34364-26-6 |
Bismut(III)-neodecanoat, Li-neodecanoat blend | 34364-26-6 | ||||
TIB KAT 804 L 1120-44-1 |
Copper oleate formulation | 1120-44-1 | ||||
TIB KAT 808 1338-02-9 |
Copper naphtenate | 1338-02-9 | ||||
TIB KAT 810 24593-34-8 |
Cerium octoate formulation | 24593-34-8 | ||||
TIB KAT 811 68084-49-1 |
Cerium neodecanoate | 68084-49-1 | ||||
TIB KAT 812 24593-34-8 |
Cerium octoate formulation | 24593-34-8 | ||||
TIB KAT 813
|
Zirconium chelate | |||||
TIB KAT 815 - 14024-18-1 |
Iron acetylacetonate | - | 14024-18-1 | |||
TIB KAT 816 22464-99-9 |
Zirconium 2-ethylhexanoate, Zirconium octoate formulation | 22464-99-9 | ||||
TIB KAT 824 22464-99-9 |
Zirconium 2-ethylhexanoate, Zirconium octoate formulation | 22464-99-9 | ||||
TIB KAT 851
|
Aluminium chelate | |||||
TIB KAT 854
|
Aluminium chelate | |||||
TIB KAT 9100 27253-32-3 |
Manganese-neodecanoat | 27253-32-3 | ||||
TIB KAT 9160
|
Manganese-neodecanoat blend | |||||
TIB KAT HES 70% - 107-36-8 |
Hydroxyethane sulphonic acid 70 % | - | 107-36-8 | |||
TIB KAT K15 3164-85-0 |
adPotassium octoate formulation | 3164-85-0 | ||||
TIB KAT K25 26761-42-3 |
Potassium based catalyst formulation | 26761-42-3 | ||||
26761-42-2 |
TIB KAT K25 DINCH60 | 26761-42-2 | ||||
TIB KAT MP CH3SO3H 75-75-2 |
Methanesulphonic acid modified | CH3SO3H | 75-75-2 | |||
TIB KAT MSA 99 CH3SO3H 75-75-2 |
Methanesulfonic acid 99 % | CH3SO3H | 75-75-2 | |||
TIB KAT P 216 3648-18-8 |
Dioctyltin dilaurate (DOTL) powder blend | 3648-18-8 | ||||
TIB KAT P 716 34364-26-6 |
Bismuth neodecanoate formulation powder blend | 34364-26-6 | ||||
TIB KAT P 790 34364-26-6 |
Bismut(III)-neodecanoat, Li-neodecanoat powder blend | 34364-26-6 | ||||
TIB KAT S70 - 5138-18-1 |
Sulphosuccinic acid 70 % | - | 5138-18-1 | |||
TIB KAT SP CH3SO3H 75-75-2 |
Methanesulphonic acid modified | CH3SO3H | 75-75-2 |
Our products
in the range Homogeneous Catalysis
Tin, but also bismuth, zinc, titanium, zirconium, cerium, aluminum and potassium catalysts are common compounds in homogeneous catalysis, especially in polymerization reactions and in organosynthesis. Tin-based catalysts, typically in the form of organic tin compounds, are active in solution and offer specific advantages such as good solubility, high selectivity and controlled reaction rates. Their areas of application includes production of polyurethanes, polyesters and specific organic compounds. The most important applications of metal catalysts in homogeneous catalysis include:
1. Polyurethane manufacturing Polyaddition reactions: Tin compounds are common catalysts in polyurethane synthesis. They accelerate the reaction between isocyanates and polyols and are soluble in organic solvents or in the reaction components themselves. Soft and rigid foam applications: In the production of polyurethane foams, tin catalysts control the curing speed and cell structure, which is important for products such as upholstery, mattresses and insulation in the construction industry.
2. Polyester synthesis Esterification and polycondensation: Tin catalysts are used in the synthesis of polyesters. They accelerate the polycondensation reaction between diols and dicarboxylic acids. Advantages: The homogeneous catalysis with tin enables high controllability of the molecular weight distribution and esterification, which is particularly important for the production of polymers with defined properties.
3. Organic synthesis Tin catalysts are used in organic synthesis for certain selective addition or condensation reactions. Tin-containing complexes, such as tin acetates or tin halides, are helpful to control the reaction rate and selectivity.
4. Ring-opening polymerization Synthesis of biopolymers: In the production of biodegradable plastics such as polylactide (PLA), organotin catalysts such as tin(II) octoate are used to catalyze the ring-opening polymerization of lactides. This reaction is important for the production of polymers used in the packaging industry or medical applications.
5. Transesterification and other reactions in oleochemistry Esterifications and transesterifications: In oleochemistry, tin catalysts are used to convert fatty acids and oils into esters, which are used in biodiesel production or for cosmetic and pharmaceutical products. Ester conversion for fine chemicals: These catalysts enable efficient production of specialty esters and intermediates often required in the cosmetics and pharmaceutical industries.
6. Advantages and challenges of tin catalysts in homogeneous catalysis Efficiency and selectivity: Tin catalysts offer high efficiency and enable precise control of reaction rate and selectivity, which is advantageous in the production of high-quality and specialty plastics or fine chemicals. Environmental and health aspects: Overall, tin catalysts can be used in a variety of ways in homogeneous catalysis due to their high activity and good controllability, especially in polymer production and in special organic syntheses