Homogeneous Catalysis

Wide range of applications in homogeneous catalysis

Tin, along with bismuth, zinc, titanium, zirconium, cerium, aluminum, and potassium catalysts, is frequently used in homogeneous catalysis, particularly in polymerization reactions and organic synthesis. Tin-based catalysts, usually in the form of organotin compounds, are active in solution and offer advantages such as good solubility, high selectivity, and controlled reaction rates. Key applications include the production of polyurethanes, polyesters, and specialty organic compounds. Tin catalysts are valuable due to their efficiency and selectivity, though environmental and health aspects must be considered.

Trade name Description Chem. formula CAS No.

Stannic chloride, anhydrous

SnCl4 7646-78-8

SnCl4 7646-78-8

Stannic chloride solution in water

SnCl4 7646-78-8

SnCl4 7646-78-8

Stannous chloride solution

SnCl2 7772-99-9

SnCl2 7772-99-9

TIB ISCRA AOA-2

- 6303-21-5

Antioxidant - 6303-21-5

- 301-10-0

TIB KAT 129 - 301-10-0

TIB KAT 152

SnCl2*2H2O 10025-69-1

Stannous chloride dihydrate SnCl2*2H2O 10025-69-1

TIB KAT 160

814-94-8

Stannous oxalate 814-94-8

TIB KAT 162

SnCl2 7772-99-8

Stannous chloride, anhydrous SnCl2 7772-99-8

TIB KAT 188

- 21651-19-4

Stannous oxide - 21651-19-4

TIB KAT 211

- 25168-22-3

Dibutyltin dineodecanoate formulation - 25168-22-3

TIB KAT 212

-

Dibutyltin dicarboxylate formulation -

TIB KAT 213

22205-30-7

Dioctyltin dilaurylmercaptide 22205-30-7

TIB KAT 214

- 26401-97-8

Dioctyltin dithioglycolate - 26401-97-8

TIB KAT 216

- 3648-18-8

Dioctyltin dilaurate (DOTL) - 3648-18-8

TIB KAT 217

- 870-08-6

Dioctyltin oxide (DOTO) formulation - 870-08-6

TIB KAT 218

- 77-58-7

Dibutyltin dilaurate (DBTL) - 77-58-7

TIB KAT 220

- 23850-94-4

Monobutylzinntris(2-ethylhexanoate) - 23850-94-4

TIB KAT 223

- 54068-28-9

Dioctyltin diketanoate - 54068-28-9

TIB KAT 225

- 3669-02-1

Dibutyltin stannoxane - 3669-02-1

TIB KAT 226

22673-19-4

Dibutyltin diketanoate 22673-19-4

TIB KAT 226 V 80

- 22673-19-4

Dibutyltin diketanoate formulation - 22673-19-4

TIB KAT 229

- 17586-94-6

Dioctyltin diacetate (DOTA) - 17586-94-6

TIB KAT 232

- 870-08-6

Dioctyltin oxide (DOTO) - 870-08-6

TIB KAT 233

- 1067-33-0

Dibutyltin diacetate (DBTA) - 1067-33-0

TIB KAT 233S

- 1067-33-0

Dibutyltin diacetate (DBTA) formulation - 1067-33-0

TIB KAT 248

- 818-08-6

Dibutyltin oxide (DBTO) - 818-08-6

TIB KAT 250

- 13355-96-9

Monobutyltin dihydroxychloride - 13355-96-9

TIB KAT 251

- -

Alkyltin oxide mixture - -

TIB KAT 256

- 2273-43-0

Monobutyltin oxide (MBTO) - 2273-43-0

TIB KAT 300

68928-76-7

Dimethyltin dineodekanoate 68928-76-7

TIB KAT 318

- 68299-15-0

Dioctyltin  dineodecanoate - 68299-15-0

TIB KAT 319

- 1185-81-5

Dibutyltin bislaurylmecaptide - 1185-81-5

TIB KAT 320

- 24577-34-2

Dioctyltin bis(2-ethylhexanoate) - 24577-34-2

TIB KAT 321

10584-98-2

Dibutyltin bis(2-ethylhexylmercaptoacetate) 10584-98-2

TIB KAT 324

- -

Dioctyltin  stannoxane - -

TIB KAT 330

3865-34-7

Dimethyltin dioleate 3865-34-7

TIB KAT 340

51287-84-4

Dimethyltin bislaurylmercaptide 51287-84-4

TIB KAT 354

57583-35-4

Dimethyltin bis(2-ethylhexylmercaptoacetate) 57583-35-4

TIB KAT 410

- 870-08-6

Dioctyltin oxide (DOTO) formulation - 870-08-6

TIB KAT 411

870-08-6

Dioctyltin oxide (DOTO) formulation 870-08-6

TIB KAT 416

- 93925-42-9

Dibutyltin oxide (DBTO) formulation - 93925-42-9

TIB KAT 417

- 870-08-6

Dioctyltin oxide (DOTO) formulation - 870-08-6

TIB KAT 422

- 93925-43-0

Dioctyltin oxide (DOTO) formulation - 93925-43-0

TIB KAT 423

- 870-08-6

Dioctyltin oxide (DOTO) formulation - 870-08-6

TIB KAT 424

- 818-08-6

Dibutyltin oxide (DBTO) formulation - 818-08-6

TIB KAT 425

- 870-08-6

Dioctyltin oxide (DOTO) formulation - 870-08-6

TIB KAT 425 M60

870-08-6

Dioctyltin oxide (DOTO) formulation 870-08-6

TIB KAT 517

- Titanium chelate

Titanium chelate - Titanium chelate

TIB KAT 519

27858-32-8

Titanium chelate 27858-32-8

TIB KAT 525

5593-70-4

Tetra-n-butyl titanate (TNBT) 5593-70-4

TIB KAT 530

546-68-9

Tetraisopropyl titanate (TIPT) 546-68-9

TIB KAT 531

15571-58-1

Dioctyltin bis(2-ethylhexylmercaptoacetate) 15571-58-1

TIB KAT 616

27253-29-8

Zinc neodecanoate formulation 27253-29-8

TIB KAT 617

27253-29-8

Zinc neodecanoate 27253-29-8

TIB KAT 617 DINCH60

27253-29-8

Zinc neodecanoate formulation 27253-29-8

TIB KAT 618

85203-81-2

Zinc bis(2-ethylhexanoate), Zinc octoate 85203-81-2

TIB KAT 620

85203-81-2

Zinc bis(2-ethylhexanoate), Zinc octoate formulation 85203-81-2

TIB KAT 623

14024-63-6

Zinc acetylacetonate 14024-63-6

TIB KAT 635 HD

5970-45-6

Zinc acetate dihydrate 5970-45-6

TIB KAT 670

27253-29-8

Zinc neodecanoate formulation 27253-29-8

TIB KAT 715

-

Bismuth neodecanoate, Zinc neodecanoate mixture -

TIB KAT 716

34364-26-6

Bismuth neodecanoate formulation 34364-26-6

TIB KAT 716 LA

34364-26-6

Bismuth neodecanoate formulation 34364-26-6

TIB KAT 718

-

Bismuth neodecanoate, Zinc neodecanoate mixture -

TIB KAT 720

67874-71-9

Bismuth tris(2-ethylhexanoate), Bismuth octoate formulation 67874-71-9

TIB KAT 721 W

1450629-71-6

Bismuth based catalyst, solution in water 1450629-71-6

TIB KAT 722

67874-71-9

Bismuth tris(2-ethylhexanoate), Bismuth octoate formulation 67874-71-9

TIB KAT 724

34364-26-6

Bismuth neodecanoate 34364-26-6

TIB KAT 725 D70

26761-42-4

Potassium based catalyst formulation 26761-42-4

TIB KAT 728

67874-71-9

Bismuth tris(2-ethylhexanoate), Bismuth octoate 67874-71-9

TIB KAT 790

34364-26-6

Bismut(III)-neodecanoat, Li-neodecanoat blend 34364-26-6

TIB KAT 804 L

1120-44-1

Copper oleate formulation 1120-44-1

TIB KAT 808

1338-02-9

Copper naphtenate 1338-02-9

TIB KAT 810

24593-34-8

Cerium octoate formulation 24593-34-8

TIB KAT 811

68084-49-1

Cerium neodecanoate 68084-49-1

TIB KAT 812

24593-34-8

Cerium octoate formulation 24593-34-8

TIB KAT 813

Zirconium chelate

TIB KAT 815

- 14024-18-1

Iron acetylacetonate - 14024-18-1

TIB KAT 816

22464-99-9

Zirconium 2-ethylhexanoate, Zirconium octoate formulation 22464-99-9

TIB KAT 824

22464-99-9

Zirconium 2-ethylhexanoate, Zirconium octoate formulation 22464-99-9

TIB KAT 851

Aluminium chelate

TIB KAT 854

Aluminium chelate

TIB KAT 9100

27253-32-3

Manganese-neodecanoat 27253-32-3

TIB KAT 9160

Manganese-neodecanoat blend

TIB KAT HES 70%

- 107-36-8

Hydroxyethane sulphonic acid 70 % - 107-36-8

TIB KAT K15

3164-85-0

adPotassium octoate formulation 3164-85-0

TIB KAT K25

26761-42-3

Potassium based catalyst formulation 26761-42-3

26761-42-2

TIB KAT K25 DINCH60 26761-42-2

TIB KAT MP

CH3SO3H 75-75-2

Methanesulphonic acid modified CH3SO3H 75-75-2

TIB KAT MSA 99

CH3SO3H 75-75-2

Methanesulfonic acid 99 % CH3SO3H 75-75-2

TIB KAT P 216

3648-18-8

Dioctyltin dilaurate (DOTL) powder blend 3648-18-8

TIB KAT P 716

34364-26-6

Bismuth neodecanoate formulation powder blend 34364-26-6

TIB KAT P 790

34364-26-6

Bismut(III)-neodecanoat, Li-neodecanoat powder blend 34364-26-6

TIB KAT S70

- 5138-18-1

Sulphosuccinic acid 70 % - 5138-18-1

TIB KAT SP

CH3SO3H 75-75-2

Methanesulphonic acid modified CH3SO3H 75-75-2

Our products
in the range Homogeneous Catalysis

Tin, but also bismuth, zinc, titanium, zirconium, cerium, aluminum and potassium catalysts are common compounds in homogeneous catalysis, especially in polymerization reactions and in organosynthesis. Tin-based catalysts, typically in the form of organic tin compounds, are active in solution and offer specific advantages such as good solubility, high selectivity and controlled reaction rates. Their areas of application includes production of polyurethanes, polyesters and specific organic compounds. The most important applications of metal catalysts in homogeneous catalysis include:

 

1. Polyurethane manufacturing Polyaddition reactions: Tin compounds are common catalysts in polyurethane synthesis. They accelerate the reaction between isocyanates and polyols and are soluble in organic solvents or in the reaction components themselves. Soft and rigid foam applications: In the production of polyurethane foams, tin catalysts control the curing speed and cell structure, which is important for products such as upholstery, mattresses and insulation in the construction industry.

 

2. Polyester synthesis Esterification and polycondensation: Tin catalysts are used in the synthesis of polyesters. They accelerate the polycondensation reaction between diols and dicarboxylic acids. Advantages: The homogeneous catalysis with tin enables high controllability of the molecular weight distribution and esterification, which is particularly important for the production of polymers with defined properties.

 

3. Organic synthesis Tin catalysts are used in organic synthesis for certain selective addition or condensation reactions. Tin-containing complexes, such as tin acetates or tin halides, are helpful to control the reaction rate and selectivity.

4. Ring-opening polymerization Synthesis of biopolymers: In the production of biodegradable plastics such as polylactide (PLA), organotin catalysts such as tin(II) octoate are used to catalyze the ring-opening polymerization of lactides. This reaction is important for the production of polymers used in the packaging industry or medical applications.

 

5. Transesterification and other reactions in oleochemistry Esterifications and transesterifications: In oleochemistry, tin catalysts are used to convert fatty acids and oils into esters, which are used in biodiesel production or for cosmetic and pharmaceutical products. Ester conversion for fine chemicals: These catalysts enable efficient production of specialty esters and intermediates often required in the cosmetics and pharmaceutical industries.

 

6. Advantages and challenges of tin catalysts in homogeneous catalysis Efficiency and selectivity: Tin catalysts offer high efficiency and enable precise control of reaction rate and selectivity, which is advantageous in the production of high-quality and specialty plastics or fine chemicals. Environmental and health aspects: Overall, tin catalysts can be used in a variety of ways in homogeneous catalysis due to their high activity and good controllability, especially in polymer production and in special organic syntheses